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The current distribution of forest genetic resources on Earth is the result of a combination of natural pro-
cesses and human actions. Over time, tree populations have become adapted to their habitats including
the local ecological disturbances they face. As the planet enters a phase of human-induced climate
change of unprecedented speed and magnitude, however, previously locally-adapted populations are
rendered less suitable for new conditions, and ‘natural’ biotic and abiotic disturbances are taken outside
their historic distribution, frequency and intensity ranges. Tree populations rely on phenotypic plasticity
to survive in extant locations, on genetic adaptation to modify their local phenotypic optimum or on
migration to new suitable environmental conditions. The rate of required change, however, may outpace
the ability to respond, and tree species and populations may become locally extinct after specific, but as
yet unknown and unquantified, tipping points are reached. Here, we review the importance of forest
genetic resources as a source of evolutionary potential for adaptation to changes in climate and other eco-
logical factors. We particularly consider climate-related responses in the context of linkages to distur-
bances such as pests, diseases and fire, and associated feedback loops. The importance of management
strategies to conserve evolutionary potential is emphasised and recommendations for policy-makers
are provided.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Forests cover approximately 30% of the world’s total land mass
(FAO, 2010) and are an integral part of life on earth, providing a
range of services at local, national and global levels. Projected
changes in climate, both gradual and extreme events, pose a serious
threat to forestry (IPCC, 2011). As such, international organizations
are currently engaged in actions to address the interconnected chal-
lenges of deforestation, forests degradation and desertification in a
changing environment. Not only does climate change pose a threat
to forests themselves, but also to the millions of people who depend
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on them directly for their livelihoods (Dawson et al., 2014, this
special issue), and to the billions who are supported by forests
through the provision of environmental services that are vital to
humanity (UNEC, 2009; FAO, 2010).

Global climate change projections depend on future rates of
greenhouse gas emissions, but expected temperature increases
range from 1.1 �C to 2.9 �C by 2090–2099 (compared to 1980–
1999) for a low (B1) emissions scenario, 1.7 �C to 4.4 �C for a med-
ium (A1B) scenario and 2.0 �C to 5.4 �C for a high (A2) scenario
(Solomon et al., 2007). Even a change at the lower end of this range
is significant for forests and trees. Considerable changes in precip-
itation are also projected, with locations that are currently dry
receiving generally less precipitation and locations that are cur-
rently relatively wet receiving more (Solomon et al., 2007). Evi-
dence for negative effects of climate change on forests globally is
mounting (Allen et al., 2010). In North America, for example,
whitebark pine (Pinus albicaulis Engelm.) is dying due to a combi-
nation of drought-induced stress, mountain pine beetle attack
(Dendroctonus ponderosae Hopkins) and blister rust (Cronartium
ribicola A. Dietr.) that is attributed to climate change (Campbell
and Antos, 2000; Smith et al., 2008; Zeglen, 2002). Other negative
effects attributed to climate change include: the massive die-off
(on 12,000 km2) of Pinus edulis (Engelm.) in the southwestern
USA (Breshears et al., 2005); the sudden decline of Populus tremu-
loides (Michx.) in the USA’s Rocky Mountains (Rehfeldt et al.,
2009); the decline in Cedrus atlantica ([Endl.] Manetti ex Carrière)
in the Middle Atlas mountains of Morocco (Mátyás, 2010); the
decline of Fagus sylvatica L. in southwest Hungary (Mátyás et al.,
2010); and the replacement of F. sylvatica by more drought-toler-
ant Quercus ilex L. in Catalonia, northeast Spain (Peñuelas et al.,
2007).

Although in this paper our focus is the challenges in responding
to anthropogenic climate change, it should be noted that human-
included environmental alteration also carries some potential ben-
efits for forest production in particular regions, where net produc-
tivity may be raised due to increases in CO2 levels and temperature
(in contemporary cold regions), if drought stress does not become
limiting. For crops, modelling shows that drought often becomes
constraining despite elevated CO2 levels acting as a ‘fertilizer’
(Parry et al., 2004). In cold climates, it is not unusual for natural
tree populations to be located under sub-optimal conditions, with
the discrepancy between the inhabited and the optimal climate
increasing with the severity of climate (Rehfeldt et al., 2004). In
such locations, an increase in temperature, coupled with at least
stable precipitation, may result in increased wood yields in the
short- to medium-term. Projected examples of such increases
include: Pinus banksiana in the North American Great Lakes region
(Mátyás and Yeatman, 1992; Mátyás, 1994); Pinus contorta, Pinus
sylvestris and Larix sibirica in Siberia (Rehfeldt et al., 1999, 2001,
2004); Picea glauca in southern Quebec (Beaulieu and Rainville,
2005); and Pseudostsuga menziesii in western North America
(Leites et al., 2012a,b). In the longer-term, however, declines are
expected as adaptive and plastic capacities to respond to change
are exhausted (Mátyás et al., 2010).

Here, we address the role that forest genetic resources (FGR, the
genetic variation in trees of present or potential benefit to humans;
FAO, 1989) can play in responding to anthropogenic climate
change. The present distribution of FGR globally is the result of nat-
ural geological, ecological and genetic processes, which, over thou-
sands of years, and along with the influence of man, have resulted
in adaptation to local environments (Alberto et al., 2013). Included
in this is adaptation to local disturbances, such as fire, insects and
diseases. We review the pressures on FGR imposed directly by
changing climate, as well as the indirect impacts on forests induced
by changes in the biotic (e.g., insect and disease) and abiotic (e.g.,
fire, flood) disturbances that affect them. In particular, we consider
climate-related responses in the context of linkages to distur-
bances and associated feedback loops, an issue not widely
addressed in previous reviews on climate change and tree genetic
resources. We conclude by discussing the feasibility of various
management options to utilize the genetic variation in trees to
respond to climate change and present options for policy-makers.
2. The impacts of climate change on FGR

Impacts are experienced through several demographic and
genetic processes (Kremer et al., 2012; Savolainen et al., 2011).
Some are directional and gradual, such as trends in increasing tem-
perature and reducing rainfall, while others involve abrupt change,
including drought, flood, fire and sudden pest invasions (in this
paper we refer to these as catastrophic events; Scheffer et al.,
2001; Scheffer and Carpenter, 2003). If environmental change is
directional and continuous, fast-maturing trees in particular may
have the potential to adapt genetically (Hamrick, 2004). At the
receding edge of species distributions in particular, however, the
magnitude and speed of projected anthropogenic climate change
is likely to surpass adaptive capacity in many cases, resulting in
local extirpations (Davis and Shaw, 2001). As climate changes, spe-
cies and genotypes within species that are mal-adapted may be
replaced by fitter ones that are already present at a site or by geno-
types migrating from elsewhere. At the ecosystem level, the result
will be a change in the relative abundance of species and genotypes
in the landscape. Such changes may be unpredictable, with signif-
icant changes in net ecosystem productivity possible (Thornley and
Cannell, 1996; Wang et al., 2012). Extirpation of ecologically
important keystone species will have critical impacts on coexisting
organisms and their adaptation.

Climate change may also result in high variability in tempera-
ture and precipitation, with an increase in incidence of extreme
events, such as flooding, late frosts and intensive summer
droughts, amongst other events (IPCC, 2011) (Table 1). In some
areas, such as the Mediterranean and the Neo-tropics, an increase
in seasonality is also expected (Alcamo et al., 2007; Meir and
Woodward, 2010). Under such conditions, natural selection may
not result in efficient adaptation because selection pressures are
multi-directional, involving traits that may be inversely correlated
at the gene level (Jump and Peñuelas, 2005). The standing genetic
variation in populations may then not be large enough to create
the rare new genotypic combinations that are required. Ecosys-
tems affected by abrupt change may sustain rapid and widespread
transformation as ecological tipping points are exceeded (Lenton,
2011). Given the pivotal role of trees in ecosystem function, abrupt
climate change impacts on them may thus have profound conse-
quences for forests as a whole (Whitham et al., 2006). Irreversible
loss of ecosystem integrity and function may follow, with replace-
ment by new non-endemic ecosystems (Gunderson and Holling,
2002; Mooney et al., 2009).
3. Responses of tree populations to environmental change

3.1. Adaptation and ‘standing’ genetic variation

Tree populations rely on three interplaying mechanisms to
respond to environmental change: adaptation, migration; and phe-
notypic plasticity (Davis and Shaw, 2001; Jump and Peñuelas,
2005). Genetic adaptations that make a population more suited
for survival are achieved through gene frequency changes across
generations (Koski et al., 1997). Many tree species have high
genetic variability in adaptive traits and can therefore grow under
a wide range of conditions (Gutschick and BassiriRad, 2003).
Indeed, phenotypic traits of adaptive importance, such as drought



Table 1
Forest genetic resources under pressure: climatic drivers of change.

Direct effects of changing climate These include high tree mortality through extreme climatic events, particularly drought in combination with widespread
regeneration failure (IPCC, 2011). Malhi et al. (2009), for example, examined the evidence for anthropogenic climate
change leading to future large-scale ‘‘dieback’’ in Amazonian rainforest. Analysis suggested that dry-season water stress
is likely to increase in eastern Amazonia over the 21st century, with the region tending toward a climate more
appropriate to seasonal forests. Due to their deep roots, trees are able to persist under extreme weather events such as
droughts for longer periods than many non-woody taxa can, but this persistence should not be over-estimated. For
example, in an experiment in the Amazon in which rainfall was restricted to mimic savannah conditions, Nepstad et al.
(2007) demonstrated that there was a lag of only three years before the increased mortality of mature trees due to
limited water availability

Effects of changing climate on organisms
associated with trees

In particular, changes in the biology of insect pests and diseases may make ecosystems more susceptible to tree
mortality (Alfaro et al., 2010). Because of improved environmental conditions for the pest and reduced tree resistance
due to increased stress, pests may react to climate change with range expansions and/or increases in attack severity
(Raffa et al., 2013). Since many pests have short generation times, large populations and strong dispersal abilities, they
may adapt to environmental change more quickly than host trees (Harrington et al., 2001)

Changes in abiotic disturbance regimes These include changes in fire regimes, flooding, landslides and/or hurricanes. Fire and climate are closely linked and are
also associated with changes in land use (Piñol et al., 1998; Pausas, 2004). Coupled climate and fire-risk models
(Moriondo et al., 2006) suggest not only an increase in the frequency of fires but also in fire size and length of the fire-
risk season, with some areas subject to risk that were not before. Malhi et al. (2009) considered how tipping points may
be reached in Amazonian rainforest by a combination of increased dryness and an increased incidence of fire events

Invasion by organisms foreign to local
ecosystems

This includes the increased risk of establishment by invasive species which accidentally arrive into ports of entry,
through globalized commerce. By making new niches available, climate change will facilitate the survival of mammals,
insects, diseases and/or weeds foreign to endemic ecosystems. These include invasive exotic trees introduced for
production and amenity purposes that are more precocious, have higher seed dispersal distances, are more fecund and/
or are more adaptable than existing species, or that are better suited to new environmental conditions (Peterson et al.,
2008)
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tolerance, cold-hardiness, resistance to pests and diseases, and
flowering and fruiting period, have been shown to vary across eco-
logical and geographic gradients to an extent that may be as
important as the differences observed amongst species (Alberto
et al., 2013; Petit and Hampe, 2006). The result is local adaptation
along these gradients (Alberto et al., 2013; Savolainen et al., 2007).
Navarro et al. (2002, 2005), for example, found that Cedrela odorata
L. populations sampled from areas with long dry periods were
more adapted to drought than those collected from wet areas. In
relation to pests, Alfaro et al. (2013) indicated that populations of
Sitka spruce (Picea sitchensis [Bong.] Carr.) with resistance to Pis-
sodes strobi Peck were more common in areas with intense pest
pressure than in areas where the pest was absent. The process of
adaptation to climate change is influenced by migration and
genetic drift, with fitness trait values shifting over generations to
track environmental change and to ensure the survival of tree
populations, with the emergence of endemic populations and spe-
ciation (Futuyma, 2010; Kremer et al., 2012; Savolainen et al.,
2011).

Although a large amount of genetic diversity per se does not
guarantee adaptation and adaptability (Gomulkiewicz and Houle,
2009), the high within-population genetic diversity observed in
many forest tree species (but see Vendramin et al., 2008 for a coun-
ter example) can support an optimistic view that climate change
challenges may be met by standing genetic variation in many cases
(Hoffmann and Sgro, 2011). Many forest trees, for example, have
high genetic diversity in important adaptive traits, such as tallness,
longevity and defense mechanisms (Petit and Hampe, 2006). Trees
also often have high fecundity (El-Kassaby et al., 1989), which cre-
ates a large gene pool to select from. The speed of adaptive
response within populations also depends on the size of the popu-
lation; the heritability of fitness-related traits; interconnectedness;
and the intensity, direction and duration of the selection pressure.

Field trials have been central to demonstrating the extent and
distribution of genetic diversity in fitness-related traits in tree spe-
cies (Kremer et al., 2002; Savolainen et al., 2007). Experiments
have been conducted mostly on boreal and temperate species
and a few commercially important tropical trees (Aitken et al.,
2008; Alberto et al., 2013). Recently, however, there has been a
move to include a wider range of less commercial species in the
tropics (Ræbild et al., 2011). New studies on indigenous African
fruit trees, for example, have specifically considered traits impor-
tant in the context of climate change adaptation (see www.safrui-
t.org). The information being obtained on the effects of different
treatments on root development, seedling vigour and other impor-
tant adaptive characteristics will inform the strategies by which
planting material of these fruit trees is supplied to African small-
holders (Sanou et al., 2007). In addition to common garden trials,
recent molecular-level studies have demonstrated allelic shifts in
genes related to drought and heat tolerance amongst tree popula-
tions, variables that are relevant for local adaptation (Grivet et al.,
2011).

Evidence from field experiments suggests that a balance
between divergent selection across contrasting ecological sites
and reproductive contact has maintained enough genetic diversity
to support adaptation to changing environments in the past
(Kremer et al., 2010). Certainly, it has been demonstrated that
maintaining high genetic diversity within and amongst tree popu-
lations can increase ecosystem resilience (Whitham et al., 2006;
Thorsen and Kjær, 2007), especially when trees are keystone spe-
cies (Barbour et al., 2009). Intra-specific diversity can promote
both resilience to pest attack and the productivity of individual
species; economic modelling has, for example, shown that in some
cases more optimal production under climate change will be
attained in plantations by ‘‘composite provenancing’’ from within
a species’ range (Bosselmann et al., 2008; Hubert and Cottrell,
2007).

The fast pace of anthropogenic climate change and the compar-
atively long generation interval of many trees, however, mean that
there may be insufficient time for natural selection to give rise to
genotypes within populations that are adapted to new environ-
ments (Jump et al., 2006). When environmental conditions change
at a rate beyond the point where they cause demographic declines,
the adaptive challenges faced by populations are markedly differ-
ent from those experienced during demographic expansions
(Gomulkiewicz and Holt, 1995). In a race between decline and evo-
lutionary change, if genetic change is too slow population extinc-
tion will be the result. Only when the pace and extent of
environmental change is moderate, when a population is initially
large, and when evolutionary potential is high, is a population
likely to be rescued through adaptation (Gomulkiewicz and Holt,
1995; Gomulkiewicz and Houle, 2009).

http://www.safruit.org
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3.2. Migration via pollen and seed movement

Pollen- and seed-mediated gene flow can facilitate adaptation
to new environmental conditions by replenishing population
genetic variation (Bridle et al., 2010; Le Corre and Kremer, 2003;
Polechova et al., 2009), and by reducing the effects of genetic drift
in small stands (Alleaume-Benharira et al., 2006; Lopez et al.,
2009). Under climate change, the asymmetric gene flow from large
central populations to small peripheral ones (Kirkpatrick and
Barton, 1997; Lenormand, 2002) should prove beneficial for popu-
lations at the leading edge of migration fronts, but possibly mal-
adaptive for populations at the rear edge (Hampe and Petit,
2005). Pollen is known on occasions to travel very long distances,
particularly in wind-dispersed broadleaves and conifers (Liepelt
et al., 2002), but also sometimes for animal-pollinated species
(Jha and Dick, 2010; Kramer et al., 2008; Oddou-Muratorio et al.,
2005; Ward et al., 2005). Paleoecological reconstructions of the
recolonisation of temperate zones during the Holocene have also
suggested that seeds are capable of travelling long distances rap-
idly (Brewer et al., 2002; Nathan et al., 2002), in the range of sev-
eral hundreds of meters per year. Landscape genetic approaches,
macrofossil evidence and theoretical studies, however, indicate
that cryptic refugia may have been overlooked, considerably
reducing migration estimates (McLachlan et al., 2005; Roques
et al., 2010; Willis and van Andel, 2004). In addition, modern esti-
mates of contemporary seed dispersal, although pointing to the
existence of long distance dispersal events, generally indicate that
median migration rates are in the range of a few tens of meters per
year (Amm et al., 2012; Clark et al., 1998; Sagnard et al., 2007;
Willson, 1993).

Whereas such modest migration rates are enough to keep pace
in mountain and tropical conifer biomes, migration rates of over
1 km per year may be needed, even under quite modest scenarios
of temperature change, in tropical and boreal broadleaf biomes
(Loarie et al., 2009). In addition, rates of natural migration are
reduced by forest degradation and fragmentation, which therefore
increase vulnerability to climate change (Kellomäki et al., 2001;
Malcolm et al., 2002). Trees in agricultural land or planted in cor-
ridors can enhance pollen-mediated gene flow between forest
patches (Ward et al., 2005), allowing more effective responses to
change (Bhagwat et al., 2008; Thuiller et al., 2008). Mediterranean
and other mountainous regions, where strongly contrasted topog-
raphy on a meso-or micro-geographic scale prevail, may prove to
be amongst the few biomes where climate change velocity will
not outpace migration rates (Loarie et al., 2009), provided that land
use change and man-made habitat fragmentation does not limit
natural migration processes.

Abundant seed production is needed for efficient migration
(and local adaptation, see Section 3.1). Predicting how climate
change modifies tree fecundity remains a formidable challenge,
however, because flowering phenology and seed production are
regulated by complex endogenous (e.g., hormonal) and exogenous
(e.g. climate) factors that are not completely understood yet. Selås
et al. (2002), for example, indicated that spruce seed production in
Norway is subject to a negative autocorrelation that lags by 1 year,
i.e., good seed years (mast years) are preceded by low seed years, a
phenomenon common to many trees. These authors found that
seed production during mast years was directly related to higher
temperatures in the previous spring and summer, late spring frost
and summer precipitation of the last 2 years. On the other hand,
more recently, Kelly et al. (2013), analysing extensive data sets
from five plant families, found that a warm spring or summer in
the previous year had a low predictive ability for seed production.
Kelly et al. (2013) developed a model for the prediction of seed
production that was based on temperature differentials over sev-
eral seasons. They concluded that mast seeding will be unaffected
by gradual increases in mean temperature, because this will have
little effect on the temperature differential over multiple years.
Instead, yearly climatic variability may determine the amount of
seed produced. This model was recently found to be an accurate
predictor of acorn production in valley oak, Quercus lobata Jeps
(Pearse et al., 2014).

Increased mortality under climate change reduces tree density
(especially at the receding edge), which will also affect the quan-
tity (and genetic quality) of seed crops (Restoux et al., 2008).
Changes in climate may also result in asynchronies between flower
development and pollinator availability which, for trees that
depend on animal vectors, may reduce the seed crop (Dawson
et al., 2011), at least until new mutualistic relations are established
between trees and pollinators (see Section 4.1). Many tropical tree
species that are pollinated by insects, birds, or bats may be affected
(Hegland et al., 2009).
3.3. The role of phenotypic plasticity

Phenotypic plasticity is defined as the capacity of a particular
genotype to express different phenotypes under different environ-
mental conditions (de Jong, 2005; Pigliucci and Murren, 2003). The
concept is often extended to populations and species, with ‘plastic’
trees those with flexible morphology and physiology that grow at
least reasonably well under a range of different environmental
stresses without genetic change (Gienapp et al., 2008). A degree
of phenotypic plasticity is found in most trees (Piersma and
Drent, 2003; Rehfeldt et al., 2001; Valladares et al., 2005), but var-
ies substantially amongst and within species (Aitken et al., 2008;
Bouvarel, 1960; Skrøppa et al., 2010). Even in species with very lit-
tle genetic diversity, such as Pinus pinea L. (Vendramin et al., 2008),
strong phenotypic plasticity is expressed for growth-related traits,
which may have helped the species colonise new environments
(Mutke et al., 2010).

At least in the short term, high plasticity is likely to favour tree
survival under changing environmental conditions, although
trade-offs between traits can be expected. As processes related to
phenotypic plasticity may oppose those related to genetic adapta-
tion, however, in the longer term, survival may not be favoured
(Aitken et al., 2008). Since phenotypic plasticity has a heritable
basis and may be selected for under changing environments
(Nicotra et al., 2010), complex interactions between traits are pos-
sible, depending on the magnitude and structure of change (Chevin
et al., 2010). Selecting populations and genotypes that demonstrate
good levels of phenotypic plasticity (based on multi-locational
field trials and environmental data) may be an appropriate man-
agement response to climate change for plantation forestry and
agroforestry, especially for regions where greater variation in
weather conditions is anticipated. Multi-site field trials sometimes
reveal that trees have more plastic responses than would be
expected based on their existing geographic distributions (e.g.,
Pinus radiata D. Don., Gautam et al., 2003).

Epigenetic phenomena (modification of DNA expression but not
the nucleotide sequence, e.g., through DNA methylation, histone
modification and mRNA regulation) may affect phenotypic plastic-
ity and adaptive potential (Hedhly et al., 2008). Epigenetic effects
caused by environmental stresses can be maintained across several
generations and vary across populations and individuals (Bossdorf
et al., 2008; Yakovlev et al., 2010). Since epigenetic modifications
can be reversed, they can be considered as relatively ‘‘plastic’’, pro-
viding for a rapid response to change while avoiding the need for
additional genetic diversification (Lira-Medeiros et al., 2010).
According to Aitken et al. (2008), the epigenome may provide a
temporary buffer against climatic variability, providing time for
the genome to ‘‘catch up’’ with change.
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Epigenetic effects have been demonstrated in the phenology of
bud set in Picea abies (L.) Karst. Progenies of this species whose
embryos develop in warm environments are less cold hardy than
those that develop at lower temperatures (Skrøppa and Johnsen,
2000; Johnsen et al., 2005, 2009). Similar effects have been
observed in: progeny from Picea glauca and in P. glauca � P. engel-
mannii (Parry ex Engelman.) (Webber et al., 2005); in Pinus sylves-
tris L. (Dormling and Johnsen, 1992); and in Larix spp. (Greenwood
and Hutchison, 1996). Epigenetic phenomena have also been
hypothesised to explain the phenotypic plasticity of the genetically
depauperate Pinus pinea (see earlier in this section, Vendramin
et al., 2008). There is, however, a general lack of information on
epigenetic effects in angiosperm trees (Rohde and Junttila, 2008).
Fig. 1. Forest transformation by natural disturbances. For fire-adapted tree species
in British Columbia, Canada, elimination of the old forest canopy by stand-replacing
fire triggers massive forest regeneration (top two panes). The bottom photograph
illustrates massive mortality of lodgepole pine by mountain pine beetle in British
Columbia. The diagram shows the removal of the mature lodgepole pine canopy by
mountain pine beetle (left) and forest transformation to a different species not
affected by beetle (right). Canopy mortality by disturbances creates enormous
economic losses, but at the same time provides conditions for forest regeneration.
This provides new opportunities for natural selection to operate, resulting in a new
generation of trees better adapted to new climatic conditions, and which eventually
will replace old canopies born under the climate of over one hundred years earlier.
Photographs: Canadian Forest Service.
4. Responses of tree populations to catastrophic biotic and
abiotic disturbances

Tree populations have developed mechanisms to respond to
naturally occurring disturbances within their range. North Ameri-
can conifers, for example, have adapted to outbreaks of the defoli-
ating insect spruce budworm (Choristoneura fumiferana Clem.) that
have recurred at periodic intervals (�every 35 years) at least since
the middle of the Holocene, 6000 years ago (Simard et al., 2011).
Climate change may however cause range expansions in herbivo-
rous insects (Murdock et al., 2013) and in diseases, causing
increased mortality in non-adapted populations. This is illustrated
by whitebark pine, where a warming climate has increased the
access of stands to native bark beetles that are now able to reach
higher elevations, resulting in high mortality due to low defenses
in trees that have had little previous contact with this beetle
(Raffa et al., 2013). Recent modelling supports the view that large
areas of current whitebark pine habitat are likely to become cli-
matically unsuitable over the coming decades (McLane and
Aitken, 2012). Increasingly, warm winters and earlier springs,
which cause greater drying of soils and forest fuels, are also pre-
dicted to increase the number of large wildfires and the total area
burned in temperate and some tropical forests (Malhi et al., 2009).

Tree populations respond to abrupt, non-linear environmental
changes through the mechanisms already outlined: natural selec-
tion favours genotypes with increased tolerance or resistance to
disturbances, and phenotypic plasticity plays a role. It is well
known, for example, that populations of Pinus contorta Dougl. ex
Loud. and P. banksiana Lamb. from parts of North America more
prone to natural fires have a higher proportion of serotinous cones
than those from elsewhere. Serotinous cones remain tightly closed
until a hot fire has destroyed standing trees, then releasing seed to
initiate rapid post-fire regeneration. There is also evidence that in
the Mediterranean ecosystem, fire selects tree species and individ-
uals with a particular combination of functional traits including
serotiny, thick bark and high water use efficiency (Fady, 2012;
Budde et al., 2014). Populations of many Mediterranean plants per-
sist after fire due to their capacity to form a resistant seed bank
(Lamont et al., 1991; Keeley and Fotheringham, 2000). Although
many tree species that grow in semi-arid regions have developed
mechanisms that confer a degree of resistance to periodic fires, this
may not be the case in more humid forests, where increased fire
frequency due to climate change may eliminate fire-sensitive spe-
cies (Verdu and Pausas, 2007). Regions that newly experience reg-
ular wildfires may evolve in close association with fire as the main
driver, with rapid species and genotype transitions from fire-sensi-
tive to fire-resistant (i.e., a rapid change in micro-evolutionary pat-
tern may occur).

Large stand-replacing fires or widespread insect and disease
outbreaks, although often resulting in large economic losses, do
eliminate forests that were adapted to old climatic conditions
and provide a ‘fresh start’ with new regeneration opportunities
(Fig. 1). Such successional forests will eventually adapt to new cli-
mate through natural selection, particularly at the seedling stage.
Selective shifts in traits related to fire resistance may, however,
have negative effects on economically important associated traits.
For example, Schwilk and Ackerly (2001) indicated that trees that
embrace fire as a species survival strategy are more likely to favour
traits such as short height, flammable foliage and no self-pruning.
4.1. Co-evolution and biotic disturbances

‘Co-evolution’ describes a situation where two (or more) species
reciprocally affect each other’s evolution (Janzen, 1980; Pimentel,
1961), such as the classic case of host-pathogen interaction, where
changes in R-gene resistance in the host lead to corresponding
changes in v-gene virulence in the pathogen, triggering further
rounds of change in one and then the other (Person, 1966). In trees,
such gene-for-gene relationships have, for example, been found in
a number of North American white pines in their interaction with
blister rust (Kinloch, 2003; Kinloch and Dupper, 2002). Further
important examples of co-evolution in trees include interactions
with herbivores and pollinators. In the former case, a number of
constitutive and induced defence systems, both mechanical
defences (e.g., resin canals, sclereid cells and thorns) as well as
chemical defences (e.g., the production of toxic phenols and
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terpenoids), have evolved in response to herbivory (Alfaro et al.,
2002; Cooper and Owen-Smith, 1986; Franceschi et al., 2005).
Insects and pathogens have developed mechanisms to de-activate
these defences and even utilize them for their own benefit; for
example, some insects use tree terpenes as precursors for their
communication pheromones (Erbilgin et al., 2014) or incorporate
them into their own defence systems (Higginson et al., 2012).

The relationships between trees and associated herbivores, par-
asites and pollinators are strongly influenced by environmental
factors. It is well known, for example, that drought stress reduces
the ability of conifers to defend against bark beetles due to changes
in plant defences (Ayres and Lombardero, 2000; Safranyik and
Carroll, 2006). Climate change-mediated insect epidemics are
already observed in Canada, where the mountain pine beetle has
had severe economic consequences for forestry (Konkin and
Hopkins, 2009; Fig. 1). In the Canadian province of British Colum-
bia, an outbreak of mountain pine beetle, which began in the early
part of the last decade and is only now (2014) abating, attacked
more than 13 million hectares of Pinus contorta forests. The cause
of this sustained outbreak is believed to have been a long series
of unusually warm winters (Safranyik and Carroll, 2006). As with
fire, however, large scale mortality does provide an opportunity
for wide-scale regeneration (Axelson et al., 2010) and hence more
rapid adaptation to changing climate.

Overall, pest-resistant tree genotypes occur more frequently in
areas where climate is most favourable to the insect and the lowest
resistance levels are found where the insect is absent (Alfaro et al.,
2008). As global environmental changes influence the distribution
of the insect, an associated adaptive response by the tree will be
required.

The mutualistic relationship between trees and insect or verte-
brate pollinators is of considerable interest in the context of cli-
mate change. The current view of ecologists recognizes that
plant–pollinator relationships are not always a strict one-on-one
co-evolutionary process; instead, there are many plant pollinator
systems where diverse pollinator assemblages can lead to the
maintenance of pollination services, plant reproduction and persis-
tence, and relationships change over time and space (Burkle and
Alarcón, 2011 and references therein). Under climate change, trees
may be able to rely on new pollinators that shift their attention to
them. According to Burkle and Alarcón (2011), the inherent plastic-
ity of plant–pollinator interactions suggests that many species
should be able to persist by responding to environmental changes
quickly, even though their mutualistic partners may be different.

4.2. Responses to alien invasive species

Under climate change, FGR are likely to be increasingly threa-
tened by alien invasive species i.e., more competitive trees, fungal
and other diseases and herbivores that do not occur naturally in
their local ecosystems, and to which they lack adequate defenses.
The acceleration of global trade has increased the likelihood of
cross-continental introductions of alien species, which may
become more widely established in new ecosystem niches created
by global warming (Koskela et al., 2009; Koskela et al., 2014, this
special issue; Peterson et al., 2008). When forest ecosystems are
already disturbed by other anthropogenic activities, they may have
little resistance to invasive species, especially when climate change
is also considered, with extreme results possible (Moore, 2005).
There are, for example, numerous cases of exotic trees invading
forest ecosystems (Richardson, 1998). Lack of resistance to alien
invaders, especially in temperate forests, is more severe when
the number of endemic species found in them is reduced (Petit
et al., 2004; Simberloff et al., 2002). The consequences of exotic
pest invasions may be a catastrophic elimination of FGR, such as
the cases of chestnut blight and white pine blister rust (Kinloch,
2003). At a provenance level, exotic introductions may result in
hybridisation and out-breeding depression in local tree popula-
tions already stressed by climate change, but, more positively,
hybridisation may also introduce the new genetic variation
required by trees to adapt to novel environments (Hoffmann and
Sgro, 2011).
5. FGR-based strategies to respond to climate change

Isbell et al. (2011) stated that ‘‘many species are needed to
maintain multiple functions at multiple times and places in a
changing world’’. From a forest management perspective, adapting
to climate change requires the adoption of the ‘‘precautionary prin-
ciple’’ and maintaining options in the form of inter- and intra-spe-
cific diversity (a form of insurance policy) (UNESCO, 2005). This
should increase the resilience of natural and planted forests under
environmental variability, especially if the component parts of sys-
tems and their interactions respond differently to disturbances
(Fleming et al., 2011; Kindt et al., 2006; Steffan-Dewenter et al.,
2007). As climate change progresses, poorly-performing trees will
be naturally replaced by alternatives that are better suited to
new conditions, altering the relative abundance of different species
and genotypes in landscapes (Jump and Peñuelas, 2005). As resil-
ience rests on the maintenance of genetic, species and ecosystem
diversity, management strategies should support diversification
at all three levels (Millar et al., 2007; Jump et al., 2008).

Although humans impacts on forests over time have often
involved (genetic) resource depletion (e.g., in the Mediterranean,
Fady et al., 2008), silvicultural interventions can provide opportu-
nities to manage forests better under climate change. Several of the
management interventions required to support natural and
planted production forests in the context of climate change can
be considered as good practice under ‘business as usual’ scenarios
(Guariguata et al., 2012). Forest managers sometimes question,
however, whether interventions specifically formulated to respond
to climate change are economically justified, as tropical foresters
are likely to consider commercial agriculture and unplanned log-
ging more important production threats (Guariguata et al., 2012).
Interviews of foresters in Europe indicate that they are sometimes
similarly ambivalent in implementing specific management
responses to climate change, partly reflecting uncertainties in cli-
mate impacts and appropriate responses (Milad et al., 2013).

As part of the toolkit that foresters can use to adapt forests to
climate change, the distribution of FGR and their silviculture can
be modified in space and time (Sagnard et al., 2011; Lefèvre
et al., 2013). To date, few countries have however taken practical
steps to reduce the risk of FGR loss due to climate change. Relevant
steps are usually only indirectly incorporated into action plans for
forest management under climate change. In France, for example,
FGR are not explicitly mentioned in the national adaptation strat-
egy (ONERC, 2007). They are, however, part of the action plan for
forests, one of the sectors included in the national strategy for bio-
diversity, where recommendations for their conservation and sus-
tainable use are explicitly mentioned (MAP, 2006).
5.1. Assisted migration

Assisted migration involves human movement of tree seed and
seedlings from current locations to sites modelled to experience
analogous environmental conditions in the future (Guariguata
et al., 2008; McLachlan et al., 2007). Such movements may be lat-
itudinal, longitudinal or altitudinal, and are designed to reduce
extinction risks for those species not able to naturally migrate
quickly enough, and to maintain forest productivity (Heller and
Zavaleta, 2009; Marris, 2009; Millar et al., 2007). Assisted
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migration may be undertaken over long distances, or just beyond
the current range limit of particular genotypes and populations,
or within the existing range (Winder et al., 2011). A gradual form
of assisted migration could consist of reforestation of harvested
sites with seed from adjacent locations likely to be better adapted
to the planting site under future climate (e.g., in the Northern
hemisphere, using seed from sources to the south; in mountainous
regions using seed from lower elevations).

Aubin et al. (2011) and Winder et al. (2011) reviewed the pros
and cons of the assisted migration approach. One problem is that
the selection between different global climate models (GCMs)
and the methods for downscaling to detailed geographic levels
are still areas of active research and thereby introduce uncertainty
in modelling, especially for marginal environments (Fowler et al.,
2007). Clearly, areas of high probability for a given future environ-
ment, based on ensemble forecasting across GCM (and across the
various statistical models available for determining species distri-
butions) should be priorities for action (Rehfeldt et al., 2012).

Much uncertainty is also due to the unknown future trajectories
of greenhouse gas emissions in the longer term, as these will
depend on technological developments that increase or decrease
emissions (IPCC, 2011). For more immediate future scenarios, how-
ever, the variation amongst models is small; for México, for the
decade centered on the year 2030, for example, it is only about
±0.2 �C of mean annual temperature (Sáenz-Romero et al., 2010).
Another difficulty in modelling is that the current distributions of
tree species, which form the basic input data for determining likely
future distributions, are often not well known (McLachlan et al.,
2007; Rehfeldt and Jaquish, 2010), especially in the tropics, where
sometimes complex topographies and high biodiversity paradoxi-
cally make accurate predictions even more urgent. In the light of
uncertainties in modelling, the United Kingdom’s Forestry
Commission (2011) considers risk minimisation as the best
approach, by maintaining existing genetic variation, promoting
migration, encouraging natural regeneration and supporting prov-
enance mixing in plantations (Hubert and Cottrell, 2007).

As already noted (see Section 4.2), interventions that involve
moving tree species into entirely new areas is hotly debated
because of potential disturbances to indigenous flora and fauna.
There are also numerous commercial forestry examples where
the introduction of ill-adapted genetic resources has resulted in
massive production failures. For example, 30,000 ha of Pinus pinas-
ter Aiton plantations were destroyed in the Landes region of France
during the winter of 1984 to 1985 following the introduction of
non-frost-resistant material from the Iberian Peninsula (Timbal
et al., 2005). Careful thought to all environmental factors should
therefore be given before climate-related assisted migrations are
undertaken. In mountain regions, upwards associated transloca-
tions may not be an option if populations are already at or near
the summit (translocation must then be to different mountains),
or if edaphic conditions are unsuitable (Lauer, 1973). Certainly,
the establishment of viable populations at extremely high altitudes
would be very challenging (Sáenz-Romero et al., 2010, 2012).

Another challenge to assisted migration that is specific to long-
living perennials is that, where climate is changing quickly, large
differences in conditions may be observed over an individual tree’s
lifespan. To find species or genotypes well adapted to conditions at
establishment and at productive maturity (e.g., for some species,
perhaps a century later) may therefore be difficult. In order to
achieve a proper balance, the interval to production/maturity
needs to be considered, and multiple stepped translocations over
time may be required (Soto-Correa et al., 2012). In addition,
changes to pest outbreak risk could simultaneously occur as a
result of climate change, and this should be factored into assisted
migration decisions (Murdock et al., 2013).
Another useful approach is to conduct assisted migration on
assemblages of species with positive interactions that reduce cli-
mate risks. For example, a ‘‘first-stage’’ species may be planted as
a nurse crop to provide protection from temperature extremes
for a second tree. Such an approach has been applied to Abies reli-
giosa (Kunth) Schltdl. et Cham., using the leguminous shrub Lupi-
nus elegans Kunth as a nurse plant for seedlings (Blanco-García
et al., 2011). Within species, assisted gene flow, where genes are
exchanged between populations by moving individuals or
gametes, has also the potential to control and reduce mal-adapta-
tion (Aitken and Whitlock, 2013).

5.2. Selection and breeding

Climate change-related traits including plasticity and adapta-
tion to increased drought need to be incorporated more actively
into breeding programs (IUFRO, 2006). Many existing provenance
trials were established before the need to respond to large scale
anthropogenic environmental change was considered an impor-
tant research issue and the traits measured have therefore often
not been the most important ones from this perspective. Neverthe-
less, information from old trials can be reinterpreted in the context
of climate threats (Aitken et al., 2008; Alberto et al., 2013). New tri-
als established to assess explicit responses to climate change are
being established in a number of countries (see, e.g., http://treeb-
reedex.eu/).

Traits needed to respond to different climatic conditions not
often considered previously in breeding include:

� Pest and disease resistance: As noted above (Section 4), climate-
change-mediated increases in pest and disease attack are a cru-
cial issue in commercial forestry. To date, one of the most
extensive programmes to develop trees with resistance to
insect pests in temperate regions is in British Columbia
(Alfaro et al., 2013; King and Alfaro, 2009). Using a conventional
breeding approach, Picea sitchensis genotypes with resistance to
the white pine weevil were screened and deployed in reforesta-
tion programmes (Alfaro et al., 2013; Moreira et al., 2012). Such
traits may be controlled by only a few loci as a result of gene-
for-gene co-evolution (sensu Thompson and Burdon, 1992), as
already described (Section 4.1), making breeding easier.
� Drought resistance: For many tree species, such as in the Medi-

terranean and parts of the tropics, altered moisture regimes will
be of greater concern than temperature changes (Santos-del-
Blanco et al., 2013). Drought stress induces a range of physio-
logical and biochemical responses in plants and an assortment
of genes with diverse functions are induced or repressed in
organ-specific changes (Kreps et al., 2002; Shinozaki and
Yamaguchi-Shinozaki, 2007), which may make breeding more
difficult. Perdiguero et al. (2013), for example, using microarray
analysis, detected that up to 113 genes were significantly
induced by drought in two Mediterranean pine species. Spe-
cies-dependent features shape the transcriptome response; for
example, almost none of the 27 genes reliably responsive to
water stress in Arabidopsis thaliana (L.) Heynh., differentially
regulated under drought in poplar and pine (Polle et al.,
2006). Candidate genes for drought tolerance include those
involved in the synthesis of abscisic acid, transcriptional regula-
tors of drought-inducible pathways, and late embryogenesis
abundant proteins; shifts at such loci have been linked to global
warming (Hoffmann and Willi, 2008).
� Fire resistance/tolerance: Since fire incidence and severity will

increase in many regions under climate change, breeding for
features such as serotiny, thicker bark and higher water use effi-
ciency may all be required (e.g., Jump et al., 2008).

http://www.treebreedex.eu/
http://www.treebreedex.eu/
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� Cyclone resistance/salt tolerance: Rising sea levels and an
increase in the frequency of storms have the potential to wreak
heavy damage on coastal forests, with low elevation islands at
particular risk. Differential abilities to withstand storms and
salinity are found more commonly amongst, rather than within,
species, but the possibility of intra-specific selection should be
further explored. Increasing storm frequency in the Pacific due
to climate change has led to efforts to identify cyclone-resistant
species such as Endospermum medullosum L.S.Sm. for large-scale
planting. In Vanuatu, for example, the establishment of
20,000 ha of plantations of this species is planned over the next
20 years.
� Phenotypic plasticity: Important but generally poorly under-

stood, the plasticity of particular tree species and populations
is vital for responding to climate change, and can be studied
in common garden tests (Rehfeldt et al., 1999, 2002; Vitasse
et al., 2010). Plasticity across environments can be quantified
and response functions for particular populations generated,
which describe the change in a trait as a function of the transfer
distance or the change in an environmental factor (Rehfeldt
et al., 1999, 2002). Populations vary in their response functions:
in Pinus contorta, for example, some populations have a high
growth rate over a much wider range of climatic conditions
than others do (Wang et al., 2006).

At a strategic level, the feasibility of classical breeding
approaches as a response to climate change needs to be consid-
ered. Yanchuk and Allard (2009) reviewed 260 activities for pest
and disease breeding in trees, and found relatively few examples
where resistant or tolerant material had been developed and
deployed operationally. They concluded that future programs to
tackle increased pest and disease incidence caused by rapid cli-
mate change were likely to have limited success if they relied on
conventional breeding approaches (but see the case in this section
above on P. sitchensis and white pine weevil). The long life cycle,
large size, and (generally) poorly characterised genetics of trees
all make breeding responses to climate change more costly and
slower than for annual species. Indeed, in the neo-tropics,
Guariguata et al. (2008) were unable to identify any changes to
industrial tree breeding approaches that were aimed specifically
to this end.

A breeding response to climate change requires agile and accu-
rate methods that can deliver the needed genetic improvements
but with substantially reduced time and resources. More than ever,
breeding programs need to target several traits simultaneously,
while conserving large genetic bases for unpredictable adaptation
needs (Eriksson et al., 1993). The recent development of Next Gen-
eration Sequencing and Genotyping by Sequencing approaches
offers an unlimited number of genetic markers, creating opportuni-
ties for new developments. These include pedigree reconstruction,
so the breeding phase of tree improvement can be by-passed (e.g.,
‘‘Breeding Without Breeding’’; El-Kassaby and Lstiburek, 2009),
with additional simplifications in testing (El-Kassaby et al.,
2011); the use of pedigree-free models that can deliver genetic
assessments with unprecedented precision, with the added advan-
tage of applicability to unstructured natural populations (El-
Kassaby et al., 2012; Klápšte et al., 2013; Korecký et al., 2013);
and selection methods that utilize information from the entire gen-
ome (Meuwissen et al., 2001). Additionally, new methods for bul-
king-up and delivering the improvements of breeding are needed
for commercially important species, as traditional methods (e.g.,
seed orchards) are slow. Renewed efforts are needed for improving
and simplifying vegetative propagation methods, starting from the
conventional production of rooted-cuttings through to somatic
embryogenesis.
6. Conclusion

Forest resilience and ecosystem stability are required to ensure
the future flow of ecosystem services over space and time in the
support of world societies (FAO, 2010). These depend on maintain-
ing genetic diversity, functional species diversity and ecosystem
diversity (beta diversity) across forest landscapes and over time.
Only adapted and adaptable genetic material will, for example,
efficiently mitigate global carbon emissions. From a forest manage-
ment perspective, adapting to climate change (and mitigating its
effects) requires the adoption of the ‘‘precautionary principle’’
and maintaining options including intra-specific diversity
(UNESCO, 2005). Tree species generally contain high genetic diver-
sity in many of the traits and genes analysed, which supports this
principle (Jump et al., 2008), but the potential of trees to respond to
climate change should not be over-estimated (Nepstad et al.,
2007).

In determining human responses to climate change for the for-
estry sector, there needs to be good supporting evidence if the
active engagement of forest managers is to be obtained to support
management interventions that proceed beyond good ‘business as
usual’ practice (Guariguata et al., 2012; Milad et al., 2013). This evi-
dence includes reliable science-based estimates of risks and the
benefits of management for the mitigation of climate change
impacts. Responses based on assisted migration need to include
the consideration of all environmental factors, as the consequences
of only partial consideration (response to a single or a few variables
only) may be catastrophic (cf. Timbal et al., 2005), with such mea-
sures then losing credibility with forest managers. For assisted
migration, modelling should consider potential damage by biotic
and abiotic disturbances; for example, potential increases in pest
and fire risk as a result of stress in the new area (Murdock et al.,
2013).

Assisted migration responses to climate change that are based
on greater dependency on the trans-national exchange of forest
genetic resources require an appropriate policy and legislative
environment to support transfer, including by the harmonisation
of phytosanitary requirements, as noted by Koskela et al. (2009).
At a national level, policies defining seed zones will need to be
modified to allow the assisted migration of genetic material within
nations. Countries developing national forestry action plans should
also be encouraged to specifically include genetic level responses
to climate change in their plans, which has sometimes, but not
always, been the case to date (Hubert and Cottrell, 2007).

Designing proper responses to climate change requires a greater
understanding of the extent of phenotypic plasticity in trees for
important traits, the adaptive significance of plasticity, the differ-
ences in phenotypic plasticity amongst different genetic levels
(genotypes, families, populations, etc.), and the trade-offs between
plastic and adaptive responses (Aitken et al., 2008). Also required is
further research on epigenetic effects, especially in angiosperm
trees (Rohde and Junttila, 2008). Plastic and adaptive responses
can be studied in multi-locational common garden experiments
that specifically consider climate-related traits in measurement
and design (Rehfeldt et al., 2002; Vitasse et al., 2010). For ani-
mal-pollinated species in particular, research is also needed on
the effects of climate change on tree reproductive capacity, such
as how elevated temperatures may affect mutualisms with pollin-
ators, and how the changed availability of mutualistic partners
influences the persistence of interacting species (Hegland et al.,
2009).

As in previous climate change episodes, forest genetic resources
will recombine to produce new variants, which through natural or
assisted selection will produce the genotypes required to continue
providing the ecosystem services that societies need from forests.
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But, as climate change progresses it will be important to monitor
the adaptation of trees, stands and ecosystems, and to intervene
with efforts to support adaptation where needed.
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Klápště, J., Lstibůrek, M., El-Kassaby, Y.A., 2013. Estimates of genetic parameters and

breeding values from western larch open-pollinated families using marker-
based relationship. Tree Genet. Genomes. 10, 241–249.

Konkin, D., Hopkins, K., 2009. Learning to deal with climate change and catastrophic
forest disturbances. Unasylva 60, 17–23.
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